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The effects of an axial rotation on the turbulent convective flow because of an adverse
temperature gradient in a water-filled upright cylindrical vessel are investigated. Both
direct numerical simulations and experiments applying stereoscopic particle image
velocimetry are performed. The focus is on the gathering of turbulence statistics that
describe the effects of rotation on turbulent Rayleigh–Bénard convection. Rotation is
an important addition, which is relevant in many geophysical and astrophysical flow
phenomena.

A constant Rayleigh number (dimensionless strength of the destabilizing
temperature gradient) Ra =109 and Prandtl number (describing the diffusive fluid
properties) σ = 6.4 are applied. The rotation rate, given by the convective Rossby
number Ro (ratio of buoyancy and Coriolis force), takes values in the range
0.045 � Ro � ∞, i.e. between rotation-dominated flow and zero rotation. Generally,
rotation attenuates the intensity of the turbulence and promotes the formation of
slender vertical tube-like vortices rather than the global circulation cell observed
without rotation. Above Ro ≈ 3 there is hardly any effect of the rotation on the flow.
The root-mean-square (r.m.s.) values of vertical velocity and vertical vorticity show
an increase when Ro is lowered below Ro ≈ 3, which may be an indication of the
activation of the Ekman pumping mechanism in the boundary layers at the bottom
and top plates. The r.m.s. fluctuations of horizontal and vertical velocity, in both
experiment and simulation, decrease with decreasing Ro and show an approximate
power-law behaviour of the shape Ro0.2 in the range 0.1 � Ro � 2. In the same Ro
range the temperature r.m.s. fluctuations show an opposite trend, with an approximate
negative power-law exponent Ro−0.32. In this Rossby number range the r.m.s. vorticity
has hardly any dependence on Ro, apart from an increase close to the plates for Ro
approaching 0.1. Below Ro ≈ 0.1 there is strong damping of turbulence by rotation, as
the r.m.s. velocities and vorticities as well as the turbulent heat transfer are strongly
diminished. The active Ekman boundary layers near the bottom and top plates cause
a bias towards cyclonic vorticity in the flow, as is shown with probability density
functions of vorticity. Rotation induces a correlation between vertical vorticity and
vertical velocity close to the top and bottom plates: near the top plate downward
velocity is correlated with positive/cyclonic vorticity and vice versa (close to the
bottom plate upward velocity is correlated with positive vorticity), pointing to the
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vortical plumes. In contrast with the well-mixed mean isothermal bulk of non-rotating
convection, rotation causes a mean bulk temperature gradient. The viscous boundary
layers scale as the theoretical Ekman and Stewartson layers with rotation, while
the thermal boundary layer is unaffected by rotation. Rotation enhances differences
in local anisotropy, quantified using the invariants of the anisotropy tensor: under
rotation there is strong turbulence anisotropy in the centre, while near the plates a
near-isotropic state is found.
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1. Introduction
Rotating Rayleigh–Bénard convection is the flow in a layer of fluid enclosed by

horizontal plates, driven by a destabilizing temperature gradient and modified by
rotation. It can be concisely described with three dimensionless parameters:

Ra ≡ gα�T H 3

νκ
, σ ≡ ν

κ
, Ta ≡

(
2ΩH 2

ν

)2

. (1.1)

Here g is the gravitational acceleration, H the height of the fluid layer, �T the
temperature difference applied between bottom and top plates and Ω the rotation
rate; ν, κ and α are the kinematic viscosity, thermal diffusivity and thermal expansion
coefficient of the fluid, respectively. A positive/counterclockwise rotation sense is
assumed with the rotation vector aligned vertically, antiparallel with the gravitational
acceleration. The Rayleigh number Ra represents the strength of the temperature
gradient; the Prandtl number σ describes the diffusive properties of the fluid; and the
Taylor number Ta is a dimensionless representation of the rotation rate. A convenient
combination of these three parameters is the Rossby number

Ro ≡
√

Ra

σTa
, (1.2)

which directly compares the buoyancy strength with the Coriolis force. The
horizontally infinite layer is of course impossible in practical applications, and hence
a lateral confinement is introduced. A popular geometry for experiments is an upright
cylinder. The extra parameter to describe the geometry is the diameter-to-height
aspect ratio Γ ≡ D/H , with D the diameter of the cylinder.

The addition of rotation to the Rayleigh–Bénard problem changes the stability
criterion for onset of convection (Chandrasekhar 1961). The critical Rayleigh number
for onset of convection, Rac, is increased when the Taylor number grows. Yet, the oc-
currence of a secondary instability, the so-called Küppers–Lortz instability (Küppers
& Lortz 1969), enables the transition from steady to time-dependent flow at Rayleigh
numbers closer to Rac than without rotation. Another important change because of
rotation is found in the boundary layers. The addition of rotation leads to boundary
layers that actively influence the bulk flow (Ekman 1905; Stewartson 1957; Rogers
& Lance 1960). In the limit of strong rotation, at Ro � 1, the bulk flow is expected
to adhere to the so-called thermal wind balance (Gill 1982). In this limit the vertical
velocity is independent of the vertical coordinate, and vertical gradients of horizontal
velocity only occur when there are horizontal temperature gradients.

Rotating Rayleigh–Bénard convection is relevant for many geophysical and
astrophysical flow phenomena. Oceanic deep convection occurs when, in winter,
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surface cooling in the Arctic and Antarctic seas may lead to long-lived vortical
downward flow (Marshall & Schott 1999; Gascard et al. 2002). This deep ventilation
is of paramount importance for the global thermohaline circulation. The interiors of
the giant gaseous planets are also very convective and affected by rotation (Busse &
Carrigan 1976; Busse 1994), as is the outer layer of our Sun (Miesch 2000). In the
liquid-metal core of our own planet, rotating convection is believed to be the driving
force behind the self-sustained dynamo action (Jones 2000).

In the last decades there have been many investigations of non-rotating turbulent
convection. The recent review paper by Ahlers, Grossmann & Lohse (2009) gave a
comprehensive overview. The addition of rotation obviously complicates experimental
investigation. Nevertheless, there have been a number of experimental investigations
concerning the onset of convection and/or the convective heat transfer as a function
of rotation rate (Nakagawa & Frenzen 1955; Rossby 1969; Lucas, Pfotenhauer
& Donnelly 1983; Pfotenhauer, Lucas & Donnelly 1984; Pfotenhauer, Niemela &
Donnelly 1987; Zhong, Ecke & Steinberg 1993; Liu & Ecke 1997; Zhong et al. 2009).
Flow visualizations have been carried out by Boubnov & Golitsyn (1986), Zhong, Ecke
& Steinberg (1993) and Sakai (1997). A typical ordering into vertically aligned vortical
tubes is observed. The first local velocity (and temperature) measurements in the flow
have been reported by Boubnov & Golitsyn (1990) and Fernando, Chen & Boyer
(1991). Both studies used the laborious technique of particle-streak photography. The
advent of digital cameras revolutionized velocity measurements. Digital recording and
image procesing with particle image velocimetry (PIV; Raffel, Willert & Kompenhans
1998) allows for higher spatial and temporal resolutions, with increased ease and
speed of processing. In the studies by Vorobieff & Ecke (1998b, 2002) PIV is applied
in rotating convection, measuring in-plane displacements (and thus velocities) within
a planar cross-section of the flow domain.

In numerical simulations the addition of rotation is not as cumbersome. Yet, only
few numerical investigations of rotating convection have been reported. Raasch &
Etling (1991) used large-eddy simulation in a simulation of the atmospheric boundary
layer. Julien et al. (1996a ,b, 1999), Kunnen, Clercx & Geurts (2006) and Kunnen,
Geurts & Clercx (2009) simulated turbulent rotating convection on a horizontally
periodic domain, mimicking a horizontally unbounded fluid layer. Sprague et al.
(2006) numerically solved an asymptotically reduced set of equations valid in the
limit of strong rotation. Apart from our previous work (Kunnen, Clercx & Geurts
2008a), the only numerical investigations of turbulent rotating convection in a cylinder
in the literature are, to our knowledge, Oresta, Stringano & Verzicco (2007), Zhong
et al. (2009) and Stevens et al. (2009). The first paper (Oresta et al. 2007) actually
focuses on non-turbulent convection, but it also contains the heat transfer as a
function of rotation rate at one Rayleigh number for which the fluid motion is
turbulent. Zhong et al. (2009) compared heat transfer measurements with results from
simulations, focusing on the enhancement of the heat flux under rotation and the role
of the Prandtl number on this effect. Stevens et al. (2009) reported experimental and
numerical results on transitions between turbulent states caused by the rotation.

As previously mentioned, flow visualizations by Boubnov & Golitsyn (1986), Zhong,
Ecke & Steinberg (1993) and Sakai (1997) have shown that in rotating convection
there is an organization into vertically aligned tube-like vortices which account for
most of the vertical transport. However, it is also well known that in the absence
of rotation the dominant flow feature is the so-called large-scale circulation (LSC;
see Krishnamurti & Howard 1981; Brown & Ahlers 2006; Xi, Zhou & Xia 2006
and the references therein), a domain-filling circulation cell which is formed as hot
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plumes gather on one side of the domain and rise while the cold plumes sink
on the opposite side. Inspired by Hart, Kittelman & Ohlsen (2002) and Brown &
Ahlers (2006), in Kunnen et al. (2008a) we considered the effects of rotation on the
LSC both experimentally and numerically. It was found that for Ro � 2.5 the LSC
remained the dominant flow feature; the rotation merely caused the LSC to describe
a relative precession against the rotation direction of the cylinder. For 1.2 � Ro � 2.5
a transitional region was found in which the LSC was still present but was not as
strong as at higher Ro. Finally, for Ro � 1.2 the LSC was absent; instead, the vortical
plumes were the dominant structures in the flow.

The scarcity of both experimental and numerical data concerning velocity and
temperature statistics in turbulent rotating convection has prompted us to perform a
combined numerical-experimental investigation of this highly relevant flow problem,
with the focus on the turbulent flow statistics. The domain under study is an upright
cylinder with aspect ratio Γ = 1. We limit our attention to this geometry, as it already
is the default choice for experiments and numerical simulations of non-rotating
convection, providing ample opportunities for comparison. Furthermore, a domain
with square corners may possess unwanted corner-flow anomalies when rotation is
applied. In the experiments we apply stereoscopic PIV (SPIV), a technique which
records in time the three components of velocity simultaneously on many positions
in a planar cross-section of the flow. The numerical part consists of direct numerical
simulations (DNSs), which explicitly resolve all scales in the flow.

The remainder of this paper is as follows. In § 2 we present the experimental set-
up, the measurement technique (SPIV) and the measurement procedure. The DNS
method that we employ is explained in § 3, including the gathering of statistics and
a validation of the resolution. The results are split into several topics. First, in § 4
we consider the turbulence intensities and their dependence on the Rossby number.
Then, § 5 contains probability density functions (p.d.f.s) of the individual velocity
components, vertical vorticity and temperature. The effects of various rotation rates
on these distributions are examined. Next, we discuss the rotational influences on the
thickness of the various boundary layers near the bottom and top plates, as well as
at the sidewall, in § 6. Additionally, the mean bulk temperature gradient of rotating
convection is considered. We finish the presentation of the results by comparing our
previously presented experimental results on turbulence anisotropy (Kunnen, Clercx
& Geurts 2008b) with the current numerical data on this topic (§ 7). Conclusions are
drawn in § 8.

2. Experimental set-up
2.1. Convection cell

The convection cell and peripheral equipment are the same as used in our previous
works (Kunnen et al. 2008a, b, c). A sketch of the convection cell is shown in figure 1.
Letters enclosed within brackets in this section and the next refer to the labels in this
sketch.

The cylindrical measurement volume of the convection cell is confined from the
side with a Plexiglas tube of thickness 5 mm and inner diameter 230 mm (A). This
cylinder is slid over a copper disk 30 mm thick (B) that closes the cylinder from below.
Two O-ring seals are wrapped around the copper disk, making a tight fit with the
cylinder.

Clamped under the copper disk is an electric resistance heater (C). At the centre
of the disk a thermistor (D) is placed in a hole from below, so that the temperature
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Figure 1. Sketch of the convection cell. Labels are explained in the text.

very close to the interface can be measured. This temperature probe is connected to a
custom-made heater controller unit that keeps the temperature of the bottom plate at
a preset value. A uniform temperature condition is maintained by the excellent heat
conduction of copper. During operation, temperature fluctuations measured with the
thermistor do not exceed 0.02K. A single temperature measurement on the bottom
plate does not ensure temperature uniformity across the plate. However, the effect of
any temperature gradient inside the plate on the flow velocity is expected to be small,
certainly when compared with the error in the SPIV measurement.

The cooling of the fluid at the top of the cylinder is complicated by the need for
optical accessibility from above. At a height H = 230 mm above the copper plate the
cylinder is closed with a thin sheet of Plexiglas 1 mm thick (E). (In other works,
e.g. Vorobieff & Ecke 2002 and Xi et al. 2006, sapphire windows are employed to seal
the cell from above. Sapphire has better heat conduction properties than Plexiglas.
However, given the size of the current set-up, using sapphire would prove very costly.
This, in addition to the ease with which Plexiglas can be used in the assembly, led us
to choose a thin Plexiglas sheet.) A transparent cooling chamber (F) is placed on top.
The tubes connected there are used for circulation of cooling water from a cooling
bath (Haake V26/B refrigerated bath, with Haake DC50 temperature control unit).
To avoid large-scale flow structuring in the flat geometry of the cooling chamber
the inflow nozzles are fitted with finely meshed grids. A temperature probe (G) is
placed inside the chamber, connected to the temperature controller in the cooling
bath. This arrangement controls the temperature at the upper side of the cylinder.
Temperature fluctuations are smaller than 0.05 K. Homogeneity of the temperature
inside the cooling chamber was checked by repeatedly measuring the temperature at
nine different positions inside the chamber. No mean horizontal temperature gradients
were detected within the cooling chamber. At a cooling water flow rate of about 1 L s−1

and a heat transfer (estimated using the Nusselt number) of approximately 40 W the
horizontal temperature difference is estimated to be just under 0.01 K.
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Around the cylinder is a rectangular box of Plexiglas (H). The space between the
cylinder and the box is also filled with water to avoid excessive refraction on the
curved cylinder surface (the refractive index of Plexiglas, n= 1.491, matches well with
that of water, n= 1.333). Thus optical access from the sides is also possible.

The convection cell, and all other equipment mentioned here, are placed on a
rotating table. The cylinder axis coincides with the axis of rotation. Under full load
the table surface is levelled with a maximal deviation of 10 μrad. The specifications
and further details of the rotating table can be found in van Bokhoven (2007).

2.2. Measuring arrangement

For the measurement the water is seeded with polyamid seeding particles of diameter
d =50 μm (Dantec Dynamics A/S). Their density ρ = 1.03 kgm−3 matches well with
that of the water, ρ =0.997 × 103 kg m−3, at the mean working temperature T = 24◦C.
The particles are nearly neutrally buoyant. From Lide (2007–2008), the values
of the other fluid properties at this mean temperature are as follows: kinematic
viscosity ν = 9.23 × 10−7 m2 s−1, thermal diffusivity κ = 1.45 × 10−7 m2 s−1 and thermal
expansion coefficient α = 2.50 × 10−4 K−1. Hence the Prandtl number is σ =6.37.
These values will be used throughout the current paper. According to Raffel et al.
(1998), the typical particle response time τp of such a particle to changes in the fluid
flow is τp ≡ d2ρp/(18νρf ), where ρp is the density of the particles and ρf the density of
the fluid. Here τp = 1.6 × 10−4 s. This time should be compared with the smallest time
scale that occurs in the flow. The Kolmogorov time τη ≡

√
ν/ε is a good representation

of this time scale (ε is the dissipation rate of turbulent kinetic energy). Using the
a priori (non-rotating) estimate ε = ν3(Nu − 1)Ra/(σ 2H 4) (Shraiman & Siggia 1990;
Siggia 1994) and the Nusselt number result from Kunnen et al. (2008c), Nu ≈ 70, we
arrive at τη ≈ 1.3 s. The ratio of these time scales, commonly designated the Stokes
number St , is then St ≡ τp/τη ≈ 1.2 × 10−4. The particles are responding very rapidly
to changes in the flow, since St � 1. Thus we expect the particles to have velocities
representative of the local fluid velocity at their respective positions.

Illumination is done with an Nd:YAG laser (Quantel CFR400, wavelength 532 nm).
Using a cylindrical lens the beam is expanded to a sheet of thickness approximately
2mm, which traverses the convection cell horizontally (I). Two vertical positions have
been used: z = 0.5H at mid-height and z = 0.8H near the top plate. The laser is
operated at 15 Hz. Above the cell two identical digital CCD cameras (J) (Megaplus
ES1.0, Kodak/Roper Scientific) are mounted at off-cylinder-axis positions. Each
camera points inward at an angle of 35◦ with the axis. Owing to the water–Plexiglas–
air refractions the effective angles inside the water are 25.5◦; this is the so-called
stereoscopic angle (Raffel et al. 1998). The cameras record images with a resolution
of 1008 × 1019 pixels and a 10-bit dynamic range of greyscales. Laser and camera
triggering and synchronization is done with a delay generator (DG535, Stanford
Research Systems). The laser and the cameras are also placed on the rotating table,
to assure constant alignment.

SPIV is an extension of the regular PIV. By using two cameras instead of one it
is possible to resolve the out-of-plane velocity component in addition to the in-plane
components. The camera arrangement used in this work is the so-called angular
displacement configuration (Raffel et al. 1998; Prasad 2000): the cameras are placed
in such a way that their optical axes are not parallel but prescribe a so-called
stereoscopic angle. This configuration generally provides the best accuracy for the
out-of-plane displacements (Prasad 2000). The consequence of this configuration is
that since the image and lens planes are not parallel, the object plane must also be



Turbulent convection in a rotating cylinder 451

rotated relative to the lens plane using Scheimpflug adapters. When the Scheimpflug
condition (image, lens and object planes must intersect in a common line) is met the
entire image is in focus. Details on the current SPIV algorithm can be found in van
Bokhoven (2007). The calibration procedure is discussed in Kunnen (2008).

The measured velocity fields at z = 0.5H are comprised of 49 × 57 vectors,
with spacings �x =1.66 mm and �y = 1.93 mm, for a total measurement area of
approximately 9 × 12 cm2. At z = 0.8H the velocity fields consist of 53 × 55 vectors,
with spacings �x = 2.30 mm and �y =2.78 mm. The measurement area is roughly
12 × 15 cm2 in size.

The result of the SPIV procedure is a time sequence of gridded three-component
velocity data. In-plane derivatives of velocity are then easily computed using standard
finite-difference formulations. In this work the vertical component of vorticity
ωz = (∇ × u)z plays an important role. This quantity is determined with the contour
integral formulation described by (Raffel et al. 1998, p. 162). Out-of-plane derivatives
cannot be calculated from SPIV data. It must also be noted that SPIV, just as the
regular PIV technique, smoothes and locally averages the true particle displacements:
any curvature in the particle paths is linearly approximated per time step. These
displacements, and hence the velocities, thus tend to be somewhat underestimated.
This effect is magnified in the discrete derivatives to obtain derived quantities such as
vorticity.

2.3. Measurement procedure

In all experiments the average temperature of the water was kept at 24◦C. The
gravitational acceleration is g = 9.81 m s−2. The temperature difference was set to
�T = 5.00 K, which is equivalent to Ra =1.11 × 109. The true temperature difference
over the fluid is reduced by the temperature drop over the Plexiglas top plate.
A one-dimensional heat conduction analysis, using our previous Nusselt number
results (Kunnen et al. 2008c) to define an effective conductivity for the convecting
water layer, results in an effective Rayleigh number Raeff ≈ 6 × 108.

When the experimental temperature conditions are set the system is allowed to
adapt. Once the flow has adapted to the temperature setting, the rotation is introduced.
The settling time for impulsive spin-up is the so-called Ekman time scale τE ≡ H/

√
νΩ

(see e.g. van de Konijnenberg et al. 1994 and the references therein. At the lowest
rotation rate used in this paper, Ω = 0.04 rad s−1, this time scale is τE = 1.2 × 103 s.
For full adaptation a period of a few times this τE would be required. However, the
presence of fluid motion (the LSC, as discussed in Kunnen et al. 2008a) accelerates
the adaptation to the rotation compared with a still fluid. From the model of the
LSC under rotation presented in Kunnen et al. (2008a), we estimate an ‘LSC settling
time’ τs ≈ 7 × 102 s. Therefore, for the lowest rotation rates the system is allowed to
adapt for at least half an hour. Vorobieff & Ecke (1998a) showed in their spin-up
experiments of convection that indeed the transition takes only a fraction of τE at
lower rotation rates. At the larger Ω � 0.1 rad s−1 this time can be lessened, as then
τE < τs and the faster Ekman dynamics govern the adaptation.

The settings for the SPIV measurement series at both heights are presented in
table 1, with the corresponding values of the dimensionless numbers Ta and Ro as
defined in (1.1) and (1.2). In each of these experiments 104 velocity maps have been
obtained at a rate of 15 Hz, a duration of just over 11 min per measurement.

Centrifugal forces may become important at high rotation rates. A convenient
ratio to quantify the relative importance of the centrifugal acceleration to the
gravitational acceleration is the Froude number Fr ≡ Ω2D/(2g) (Hart 2000). In the
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Ω (rad s−1) Ta Ro

0 0 ∞
0.04 2.10 × 107 2.89
0.08 8.41 × 107 1.44
0.16 3.36 × 108 0.721
0.32 1.35 × 109 0.361
0.64 5.38 × 109 0.180
1.28 2.15 × 1010 0.090

Table 1. Parameters for the measurement series.

current experiments, at the highest rotation rate Ω =1.28 rad s−1, the Froude number
is still quite small, i.e. Fr ≈ 0.02. Centrifugal effects will hence be neglected.

3. Numerical arrangement
3.1. Problem description, numerical procedure and statistics

The equations of motion that govern the flow are the Navier–Stokes and
heat equations, with the constraint of incompressibility. Within the Boussinesq
approximation (Chandrasekhar 1961), these equations are

∂u
∂t

+ (u · ∇)u +
1

Ro
ẑ × u = −∇p + T ẑ +

√
σ

Ra
∇2u,

∂T

∂t
+ (u · ∇)T =

1√
σRa

∇2T ,

∇ · u = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

Here u is the velocity vector; t stands for time; ẑ is the unit vector pointing upward;
p is the reduced pressure; and T represents the temperature. The equations have been
non-dimensionalized as follows. Velocity is scaled with the so-called free-fall velocity
U ≡

√
gα�T H (Prandtl 1932). Lengths are scaled with the separation H of the bottom

and top plates. Temperatures are converted according to T = (T ∗ − T0)/�T , where T ∗

is the actual temperature and T0 the temperature of the upper plate.
Because of the current cylindrical geometry, it is advantageous to formulate the

problem in cylindrical coordinates (r, φ, z) which indicate the radial, azimuthal and
vertical components, respectively. The corresponding velocity vector is (ur, uφ, uz).
No-slip velocity boundary conditions are applied at all walls. Temperatures are
constant at the bottom and top plates: T = 1 at z = 0 and T = 0 at z =H . The
sidewall is thermally insulating: ∂T /∂r = 0 at r =H/2.

In cylindrical coordinates the governing equations (3.1) possess terms that include
a factor 1/r . These need special treatment to be evaluated at the cylinder axis
r = 0 (Verzicco & Orlandi 1996). The equations are discretized on the staggered grid
by central finite-difference formulations of second-order accuracy. The solution uses
a fractional-step procedure with the elliptic equation inverted using trigonometric
expansions in the azimuthal direction and a direct solver for the other two directions.
Details can be found in Verzicco & Orlandi (1996) and Verzicco & Camussi (1997,
1999, 2003).

The gathering of statistical data is carried out in two ways. First, averaging in the
azimuthal direction of the three velocity components, temperature and pressure is
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carried out, as well as calculation of their root-mean-square (r.m.s.) values. Also, the
dissipation rate of kinetic energy ε ≡

√
σ/Ra|∇u|2 and the thermal variance dissipation

rate N ≡ |∇T |2/
√

σRa are calculated and averaged in the azimuthal direction. Second,
numerical probes positioned at several grid cells record time histories of the three
components of velocity u and vorticity ω ≡ ∇ × u, temperature and pressure. Two
series of 150 numerical probes each are placed at respective heights z = 0.5H and
z = 0.8H , stretching from r = 0.25H , φ = 0, through r = 0, to r = 0.25H , φ = π in
straight lines.

3.2. Parameters and resolution

In all simulations we set Ra = 1 × 109 and σ = 6.4. This corresponds with our
experiments on turbulent convection in water. We take this Rayleigh number rather
than Raeff , since the latter is not known within reasonable accuracy; furthermore, such
modest differences in Ra are not expected to cause significant qualitative differences
in the results. The Rossby numbers that are used in the simulations cover nearly three
decades: Ro = 0.045, 0.068, 0.090, 0.18, 0.36, 0.72, 1.08, 1.44, 1.80, 2.16, 2.52, 2.88,
5.76 and 11.52.

The number of grid points in the radial, azimuthal and verticals direction are
Nr × Nφ × Nz =193 × 385 × 385. The distribution of grid points in the radial and
vertical directions was not uniform: close to the walls a denser grid is applied than
in the centre. For validation of this resolution we follow the criteria of Verzicco
& Camussi (2003). These authors have made a distinction between boundary-layer
and bulk resolution. In the bulk flow the smallest length scales to be resolved are
the Kolmogorov length η and the Batchelor length ηT . In the current dimensionless
variables these are

η =
( σ

Ra

)3/8

ε−1/4, ηT = η σ −1/2. (3.2)

Since σ > 1 the smallest of these is the Batchelor length (i.e. temperature structures
are finer than velocity structures in the flow). In the bulk the grid spacing should
not be too large compared with ηT (a maximal grid spacing of 4ηT was found to
be acceptable in Kerr & Herring 2000 and Verzicco & Camussi 2003). An inventory
of local dissipation ε at the centre of the domain and at the various Ro values was
carried out. It was found that ε generally increases there when rotation is added and
that ε at the centre of the domain is maximal at Ro = 0.18. At that Ro the smallest
bulk lengths η ≈ 8 × 10−3 and ηT ≈ 3 × 10−3 are found. The maximal grid spacing is
�z = 0.0048. Hence the bulk resolution is sufficient according to Verzicco & Camussi
(2003).

The near-wall resolution is mainly determined by the thickness of the thermal and
viscous boundary layers, as enough grid points should be found within these layers.
Verzicco & Camussi (2003) put forward the criterion that at least six points should
be found within the thinnest of the thermal and viscous boundary layer. As σ > 1 the
thermal boundary layer is expected to be thinner than the viscous layer. However,
it is expected that under rotation the viscous boundary layer is considerably thinner
(cf. the Ekman boundary layer; see e.g. Gill 1982; Pedlosky 1987). The very thin
Ekman boundary layers under strong rotation indeed posed considerable constraints
in terms of near-wall resolution. In an a posteriori check, at Ro =0.045 (for which
the thinnest boundary layers are found; see figure 14) there were only 10 grid points
found within the viscous boundary layer, which had decreased in size past the thermal
boundary layer. Still, the near-wall resolution is well within the specified criterion and
is considered adequate.
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Figure 2. Normalized r.m.s. velocities and their variation with Ro. (a) At z = 0.5H the
horizontal r.m.s. values urms are indicated with circles and the vertical r.m.s. values wrms with
squares. (b) At z = 0.8H the horizontal components urms are plotted with triangles and the
vertical r.m.s. values wrms with diamonds. The filled symbols are simulation results, while the
open symbols are from the experiments. The symbols on the right-hand-side boundary of both
figures are at Ro = ∞. For reference, a power-law dependence Ro0.2 is included with the dotted
line. Representative error bars for the experimental results are also included.

A third validation that is applied in Verzicco & Camussi (2003) concerns the Nusselt
number results. The Nusselt definition based on the mean temperature gradient at the
plates is sensitive to the near-wall resolution used. The other definition based on the
volume-and-time average of conductive and convective fluxes is more sensitive to
the bulk resolution. The results from both definitions were found to match within
1 % in all of the considered cases, reinforcing that both bulk and boundary-layer
resolution is appropriate for simulations in the current parameter range.

4. Turbulence intensities
Since the critical Rayleigh number for onset of convection goes up when a rotation

is added (Chandrasekhar 1953, 1961), it is generally believed that rotation stabilizes
the turbulent flow; i.e. turbulent fluctuations are diminished. The strength of the
turbulent fluctuations is represented here with the r.m.s. values of velocity, vertical
vorticity and temperature. In figure 2 the horizontal and vertical r.m.s. velocities
are plotted as a function of Ro. The values are taken at two vertical positions,
namely z =0.5H and z = 0.8H . The experimentally obtained values are normalized
by ν/H , which requires the numerical results to be multiplied by a factor

√
Ra/σ .

For the simulations, the horizontal r.m.s. velocity urms is taken as the r.m.s. value of
the azimuthal velocity uφ , as calculation of ur near the axis is difficult (Verzicco &
Orlandi 1996).

Similarly, we also report the r.m.s. values of the vertical vorticity ωrms in figure 3,
where the experimental data are normalized by ν/H 2 and the numerical data
are multiplied by

√
Ra/σ for compliance. The effects of rotation can be roughly

divided into two regimes: one for Ro � 1, where the presence of the LSC is
characteristic (Kunnen et al. 2008a), and one for Ro � 1, for which the vortical
columns are dominant.
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z = 0.5H , while the triangles are for z = 0.8H . The filled symbols are taken from the simulations,
while the open symbols are from the experiments. The symbols on the right-hand-side axis are
at Ro = ∞; a representative error bar for the experimental data is included.

For the regime Ro � 1 it is found that velocity fluctuations increase compared with
the corresponding values at Ro = ∞. It is plausible that the LSC, with its added
azimuthal drift dynamics (Kunnen et al. 2008a), is responsible for the increased
horizontal fluctuations. Concerning the vertical-velocity fluctuations, we also wish to
mention the boundary-layer effect known as Ekman pumping (Ekman 1905; Gill 1982;
Pedlosky 1987). Under rotation the viscous (Ekman-like) boundary layers respond to
the presence of vertical vorticity by enacting a vertical motion directed towards (away
from) the plate in case of anticyclonic (cyclonic) vorticity. The increased vorticity
fluctuations as Ro crosses 3 (see figure 3) coinciding with a similar increase of wrms

around the same Ro value may be an indication that Ekman pumping becomes active
around Ro ≈ 3.

At Ro � 1 both horizontal and vertical velocity fluctuations are decreasing with
decreasing Ro. For reference, a power-law relation Ro0.2 is included in figure 2(a, b).
In this regime the rotation attenuates the vertical turbulence intensities. As the
horizontal fluctuations are directly related to the vertical fluctuations (the forcing of
the flow is in the vertical direction) these follow the same trend. The leftmost points,
at Ro � 0.1, show a different scaling regime with stronger rotational dependence,
where the fluctuations are strongly damped as the stable non-convective situation is
approached in which convection is fully suppressed by rotation. For a horizontally
unbounded fluid layer, Chandrasekhar (1961) showed that the critical Rayleigh
number Rac for onset of convection is dependent on Ta: Rac =8.7 Ta2/3, which
leads to Roc = 0.011 in this case (Roc is the critical Rossby number; for Ro < Roc at
constant Ra and σ convection is suppressed by rotation). However, for a cylindrical
geometry Goldstein et al. (1993) and Zhong et al. (1993) reported a smaller Roc.
Extrapolating their results to the current Rayleigh number gives an approximate
value Roc � 1 × 10−4, much smaller than Ro =0.045, which is the lowest value of Ro
considered here.
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There is a difference in the behaviour at the two measurement heights. The
horizontal velocity fluctuations at z = 0.8H (triangles in figure 2b) have a flatter slope
for Ro � 0.3 than the other curves. The near-plate dynamics of the vortical columns
are reflected here, namely the convergent flows feeding the vortex columns and the
divergent flows that occur as the fluid has reached the vertically opposite side of the
domain. Another remarkable finding concerns the fluctuations at z =0.5H . It is found
that the rotation induces considerable anisotropy, in the sense that vertical fluctuations
are considerably larger than horizontal fluctuations. For a further discussion, see § 7.

The effects of rotation on the velocity fluctuations are remarkably different from
non-convective rotating turbulence (van Bokhoven et al., submitted), where it is found
that the rotation suppresses the vertical fluctuations and that horizontal velocities are
larger. In the current work it is found that in rotating convection vertical fluctuations
are larger than horizontal fluctuations at all rotation rates. The major difference is
that in convection the convective forcing is directed vertically, while in van Bokhoven
et al. (submitted) forcing is applied in all three directions. In the current work, only
at z =0.8H and for the lowest Rossby numbers, the horizontal fluctuations are larger
than in the vertical direction. This is here expected to be caused by the proximity of
the plate and the spin-up and spin-down of vortical plumes taking place there, which
is accompanied by strong horizontal motions.

The experimental results for both horizontal and vertical r.m.s. velocities at the
two measurement heights show excellent qualitative agreement with those of the
simulations. Quantitatively, the experimental velocity r.m.s. values are approximately
25 % below the numerical results. Losses because of the non-perfect boundary
conditions of the experiment as compared with the ‘ideal’ boundaries in the
simulations lead to a reduced effective Rayleigh number and reduced turbulence
intensities in the experiment. Furthermore, the aforementioned underestimation
of particle displacements by SPIV may enhance the discrepancy. The results of
preliminary simulations at Ra = 6 × 108 (not included in this paper) indeed show a
better quantitative agreement with the experimental data.

The vorticity fluctuations in a range of Rossby numbers around Ro =1 remain
rather constant. At the lowest Ro values considered here, however, different trends
are noticed for ωrms at the two heights under consideration. At mid-height (z = 0.5H )
ωrms shows a mild decrease with decreasing Ro while increasing near the top
plate (z = 0.8H ). The injection of vorticity close to the plates can thus be directly
detected here. Rotation enhances the kinetic energy dissipation ε in the centre,
peaking at Ro = 0.18, which is also reflected in the peak ωrms value for z = 0.5H

at that Ro. For Ro � 0.1, however, the damping of the convection by rotation is
also observed in the ωrms plots. The qualitative agreement between experiment and
simulation is again very good. However, quantitatively the separation is larger than
in the velocity r.m.s. values. This is again due to the lower effective Rayleigh number in
the experiment. Additionally, the numerical evaluation of vorticity is more accurate in
the DNS because of its higher spatial resolution. Local gradients are better resolved.
Nevertheless, an encouraging agreement between simulation and experiment is found.

The current results for velocity and vorticity fluctuations can be compared to those
of Vorobieff & Ecke (2002), who used a water-filled cell of aspect ratio Γ = 1. Although
different Rayleigh and Prandtl numbers were used in their work (Vorobieff and
Ecke applied Ra = 3.2 × 108 and σ = 5.81), the observed trends should be similar.
In that study the horizontal velocity fluctuations were measured using PIV. The
horizontal fluctuations at z =0.5H were reported to slowly decrease with decreasing
Ro. Measurements in the plane directly below the upper plate revealed that there the
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Figure 4. The r.m.s. values of temperature Trms as a function of Ro. Circles are values at
z = 0.5H , while the triangles are for z = 0.8H . A reference power-law slope Ro−0.32 is also
included (dotted line).

horizontal velocity fluctuations are largely independent of rotation rate; the current
results from somewhat deeper inside the cell at z = 0.8H show a stronger dependence
on Ro. For the vorticity fluctuations the near-wall measurements of Vorobieff & Ecke
(2002) showed a dramatic increase as Ro decreases. This effect is not as large in the
current study, since our ‘near-wall’ experiment is still quite far from the plate. As the
vortices are formed very close to the plates the effect is expected to be the strongest
at that vertical position. The vorticity fluctuations at mid-height showed a similar
trend as in the current study. The drop-off around Ro ≈ 0.1 found by Vorobieff &
Ecke (2002) is also reproduced.

A stronger dependence on Ro is found for the r.m.s. temperatures, shown in figure 4.
Experimental data for Trms are unavailable, since no temperature measurements have
been carried out. The r.m.s. temperatures increase when rotation is enhanced (in
other words Ro decreases). Although not exactly matching, a representative power
law would be Ro−0.32, which is also included in figure 4. It is representative of the
results at both z = 0.5H and z = 0.8H . Only at the lowest value of Ro, i.e. Ro = 0.045,
there is a small drop-off in Trms . For Ro � 5 there is hardly any effect of rotation on
Trms . Under rotation the vortical plumes that develop need considerably more thermal
contrast to break out from the boundary layer into the bulk fluid, as the critical Ra
has increased. The Trms values at z = 0.8H are consistently larger than at z = 0.5H .
This is a sign of the formation of vortical plumes near the plate, leading to higher
Trms values at z = 0.8H .

In this section it is indeed observed that rotation stabilizes the flow, in the sense that
rotation diminishes the strength of the turbulent velocity fluctuations. However, this
statement is only valid for Ro � 3. Around this Rossby number Ro ≈ 3 a significant
step in the magnitudes of vertical-velocity and vertical-vorticity fluctuations is found,
pointing at the Ekman pumping mechanism becoming active for this rotation rate (and
higher). The process of stabilization by rotation is observed in the velocity fluctuations
that are reduced when the Rossby number is decreased, while the temperature
fluctuations grow stronger. However, owing to the Ekman pumping, the vorticity
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Figure 5. Normalized experimental p.d.f.s of velocity fluctuations u (circles), v (triangles) and
w (squares) at Ra = 1.11 × 109, σ = 6.37 and Ro = ∞ at heights (a) z = 0.5H and (b) z = 0.8H .
The solid lines represent reference Gaussian distributions.

fluctuations are increased with decreasing Ro, especially near the plates. Only at the
lowest Ro � 0.1 under consideration there is a strong damping observed in all r.m.s.
values considered here.

5. Probability density functions
5.1. Velocity statistics

The p.d.f.s of velocity in non-rotating convection are known to be Gaussian from many
measurements (Ashkenazi & Steinberg 1999; Qiu & Tong 2001; Vorobieff & Ecke
2002; Qiu et al. 2004; Verdoold et al. 2008) and numerical simulations (Balachandar
& Sirovich 1991; Camussi & Verzicco 2004). This is confirmed with our measurements
presented in figure 5, where the p.d.f.s of the three velocity components are shown at
the two measurement positions, namely z = 0.5H and z = 0.8H . At height z = 0.8H

(figure 5b) the p.d.f.s are somewhat widened, especially that of the vertical velocity w.
The presence of coherent structures (plumes) raises the probability of extreme events
to some degree, thereby widening the p.d.f.

In figure 6 the velocity p.d.f.s at several rotation rates (Rossby numbers) obtained
from the experiments are depicted. For clarity, the plots are divided over two sub-parts:
each plot pair has on the left the cases Ro � 0.72 and the cases Ro � 0.36 on the right.
Figure 6(a–d ) shows that the distribution of horizontal fluctuations hardly changes
when rotation is added; the p.d.f.s remain close to the Gaussian shape. Vorobieff &
Ecke (2002) showed experimentally that under rotation the p.d.f.s of the horizontal
velocity components did not change by much: they observed a development of weak
exponential tails, especially close to the top plate. This development was related to the
organization of the flow into small-scale vortices. The shapes of the horizontal-velocity
p.d.f.s found here reproduce those of Vorobieff & Ecke (2002) well. The simulations
give similar results (see figure 7a–d, which has a similar division of the plots).
The distributions of horizontal velocity fluctuations (represented here with the
azimuthal velocity component uφ) are very similar to those found in the experiments.
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The influence of rotation on the vertical velocity p.d.f. has not been reported as
extensively in literature. In simulations at Ro = 0.75 by Julien et al. (1996b), near
the boundary layer, a wider distribution was found with skewness towards motion
directed away from the boundary. In simulations reported in Kunnen et al. (2006) we
confirmed this skewness behaviour but also saw an opposite trend (skewness favouring
motion towards the plate) in a vertical range starting just outside the boundary layer.
In figure 7(e–h) we show the vertical-velocity p.d.f.s from the current simulations.
They feature, at both considered heights, a development of wider tails, especially
for the lower Ro values. No strong asymmetry is observed in the distributions. In
figure 6(e, f ) the experimental p.d.f. of vertical velocity at z = 0.5H confirms the
aforementioned behaviour. Contrarily, in figure 6(g, h) the experimental p.d.f.s of
vertical velocity at z = 0.8H do develop an asymmetry. The skewness

S ≡ 〈w3〉
〈w2〉3/2

(5.1)

is a dimensionless measure for the asymmetry of a p.d.f. (w can be replaced by any
other variable): it is positive when the tail on the positive side is largest and negative
when the negative tail is dominant. The positive skewness found here (S ≈ 0.2 for all
cases Ro � 1.44) indicates that extreme positive values are slightly more probable and,
consequently, that (positive) upward velocity towards the top plate is spatially confined
to a somewhat smaller area than downward velocity (Moeng & Rotunno 1990; Kerr
1996; Kunnen et al. 2006). This effect actually goes against the behaviour very close
to the plate, reported by Julien et al. (1996b), that the vertical-velocity p.d.f. is skewed
towards motion directed away from the boundary. In the current work there is a
discrepancy between experiment and simulation concerning the skewness. A possible
explanation is presented in several steps. (i) Owing to the poorer thermal conductivity
of the plate in the experiments relative to the simulations, there is less buoyancy added
to a plume as it is formed. (ii) The plume undergoes a smaller buoyant acceleration
and also less spin-up by vortex stretching. This lessens the lateral confinement of
cold plumes in the experiments. (iii) Hence, the downward velocity is not as strongly
confined into strong small-scale structures; the negative/left-hand side of the p.d.f.
does not show an enhanced tail.

5.2. Vorticity statistics

The distributions of the vertical component of vorticity in turbulent convection
without rotation are known to be exponential (Balachandar & Sirovich 1991; Vorobieff
& Ecke 2002; Zhou, Sun & Xia 2007). The exponential shape of the p.d.f.s is
reproduced here, both in the experiments (figure 8) and in the simulations (the
highest Ro =11.52 is included in figure 9, where only minimal influence of rotation
is present). Generally, for example in Castaing, Gagne & Hopfinger (1990), the
exponential shape of the vorticity p.d.f.s is related with the stronger intermittency of
velocity derivatives than of velocity itself. Physically, this points at a concentration of
strong vorticity into localized structures.

The interaction of the fluid with the horizontal plates in turbulent rotating
convection leads to injection of strong cyclonic (vertical) vorticity into the flow
near the bottom and top plates. This effect can be observed in the p.d.f.s of vertical
vorticity at various Rossby numbers. Depicted in figure 9 are the p.d.f.s obtained from
the simulations; figure 10 presents the p.d.f.s from the experiments, with a similar
division of the plots as before, i.e. Ro � 0.72 on the left-hand side and Ro � 0.36 on
the right-hand side. When rotation is added a considerable preference for cyclonic
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selected Ro values, for z = 0.8H (upper row) and z = 0.5H (lower row). Reference exponential
distributions are also included (solid lines).

vorticity is developed (Julien et al. 1996b; Vorobieff & Ecke 2002), as is shown by
the enhancement of the right-hand-side tail relative to the left-hand-side tail. This
is especially true for the off-centre position z =0.8H (upper row in figure 9 and
figure 10c,d ), a sign of the formation of the vortical plumes near the plates. The main
difference between the results from the experiments and from the simulations is that
the tails are much more pronounced in the simulation results. As noted before in
§ 4, apart from the lower effective Rayleigh number in the experiment, the smaller
experimental resolution and error propagation in the discrete derivatives tend to
reduce the width of the measured vorticity distribution.
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numbers Ro � 0.36 are included: Ro =0.36 (diamonds), 0.18 (downward-facing triangles) and
0.090 (crosses).

To quantify the asymmetry in the vorticity distributions their skewnesses Sωz
have

been calculated. The changes of Sωz
with Ro are depicted in figure 11, for both

experiments (open symbols) and simulations (filled symbols). The skewness is mostly
positive, pointing at the input of positive vorticity by Ekman pumping near the plates.
We first discuss the skewness at z =0.5H (squares) from experiment and simulation.
They are qualitatively similar, although there is again a quantitative disagreement.
We expect that this is mostly an issue of grid resolution, which is important in the
calculation of discrete velocity derivatives for vorticity. The skewness around Ro ∼ 1
is positive, while at higher and lower Ro nearly symmetric distributions are found
at mid-height, z = 0.5H . This effect can also be found in the work of Vorobieff &
Ecke (2002), although not as pronounced, since only one of their measurements is
at a Rossby number of order one. Julien et al. (1996b) and Vorobieff & Ecke (2002)
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mentioned that anticyclonic vortical structures are unstable when their vorticity is
large compared with the rotation: ω > 2Ω . Indeed, ωrms ≈ 2Ω at Ro = 1. This effect
is a likely cause for the reduced left-hand-side tail of the vorticity p.d.f. at Ro = 1.44
and z = 0.5H in figure 9. There is considerable input of cyclonic vorticity at Ro =1,
but all negative vorticity is spread out, resulting in a positive skewness. For Ro � 1
the r.m.s. vorticity is smaller than 2Ω and anticyclonic vortices are stable; hence the
distribution is more symmetric. For Ro � 1 there is only marginal preference for
cyclonic vorticity. Indeed, the situation of unit Rossby number appears to be a special
case.

Closer to the top plate (z = 0.8H , triangles in figure 11) the skewness is generally
larger than in the centre (z =0.5H , squares in figure 11). At Rossby numbers larger
than about 0.5 there is reasonable quantitative agreement between results from
experiment and simulation. For Ro � 0.5, however, the results at z = 0.8H diverge:
a rather constant Sωz

≈ 0.25 is found in the experiments, while the numerical Sωz

reaches values up to 1.6. The experimental results are similar to those of Vorobieff &
Ecke (2002). They mentioned the trend of the vorticity distribution becoming more
symmetric as the Rossby number decreased below 0.3. This effect is absent in the
simulation results at height z = 0.8H . We cannot fully explain the discrepancy yet,
but it is expected that at least part of it is due to the aforementioned differences in
resolution. We also note that calculation of skewness requires a third-order power of
vorticity, which magnifies any finite-difference errors considerably.

5.3. Correlation of vertical velocity and vertical vorticity

In Kunnen et al. (2008b) we investigated the relation between the measured vertical
velocity w and the vertical vorticity ωz by plotting the p.d.f.s of the product wωz.
The resulting distributions are of so-called stretched-exponential shape and have
even more pronounced tails than an exponential distribution. The skewness of these
distributions can be used to quantify the correlation between the two variables w and
ωz. We showed in Kunnen et al. (2008b) that in the central region at z = 0.5H the
skewness Swωz

remains close to zero, indicating that w and ωz are not correlated at
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that height. Conversely, at the other measurement position z =0.8H a pronounced
negative skewness was found under rotation, which increased in magnitude as the
Rossby number was decreased. Thus close to the top plate positive vertical vorticity
is correlated with negative vertical velocity and vice versa. The correlation is another
sign pointing to the formation of the vortical plumes near the top plate.

A similar analysis is performed for the simulation results. The skewness Swωz
is

presented in figure 12(a) for several Ro values at z = 0.5H and 0.8H . The previous
experimental results from Kunnen et al. (2008b) are also included (figure 12b). The
numerical values of the skewness are larger than those found in the experiment,
but the same trends are found. Quantitative discrepancies between experiment and
simulation are accumulated differences from the velocity and vorticity statistics. At
z = 0.8H the skewness becomes a large negative value for smaller Rossby numbers.
At z = 0.5H it does not show much variation with Ro. Thus the preferred coupling of
negative w and positive ωz (and vice versa) at the off-centre position z = 0.8H is also
readily observed in the simulations. We have validated that near the bottom plate the
preferred coupling is of positive w and positive ωz or negative w and negative ωz.

5.4. Temperature statistics

The p.d.f. of temperature was an important ingredient in the discovery of the ‘hard’
turbulent state in non-rotating convection (Heslot, Castaing & Libchaber 1987;
Castaing et al. 1989). It was found that at Rayleigh numbers above a certain critical
value (in the cited experiments in helium, Rac ≈ 4 × 107) the temperature p.d.f. changed
from Gaussian to exponential. This transition is ascribed to a change in the plume
release in the boundary layers (Castaing et al. 1989). Above the critical Ra value
the release of plumes from the boundary layers is highly intermittent, generating
localized bursts of strong temperature contrast, differing from a smoother plume
structure with Gaussian temperature statistics below the critical value. Exponential
temperature p.d.f.s at high Rayleigh numbers have also been measured in water
(σ ≈ 5) by Solomon & Gollub (1990) and in mercury (σ ≈ 0.02) by Glazier et al.
(1999).
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Figure 13. Temperature p.d.f.s at (a) z = 0.5H and (b) z =0.8H . From top to bottom the
corresponding Rossby numbers are Ro =11.52, 2.88, 1.44, 0.72, 0.36, 0.18, 0.090 and 0.045.
The curves are shifted downward by intervals of one decade for clarity.

For convection with rotation these p.d.f.s have also been investigated. In simulations
at σ =1 and various Rayleigh numbers up to Ra = 1.8 × 108 at constant Ro = 0.75
the p.d.f.s remain Gaussian (Julien et al. 1996b). In experiments at σ =6.3, for Ra
values up to 5 × 108 and in the range 0.1 � Ro � 1.5, Liu & Ecke (1997) observed
only exponential p.d.f.s. In contrast, experiments by Hart et al. (2002) at σ = 8.4 and
at even higher Rayleigh number Ra ≈ 3 × 1011 displayed Gaussian statistics at Ro =6.

Temperature p.d.f.s have been calculated from the numerical probe data. (Since no
temperature measurement has been carried out we only present simulation results
concerning temperature statistics.) In figure 13(a) the p.d.f.s, at z = 0.5H , are shown
for 0.045 � Ro � 11.52. It is found that our simulations fully confirm the findings
of Liu & Ecke (1997): in all cases exponential distributions are found. At the lowest
Rossby numbers the tails of the p.d.f.s on both sides in figure 13(a) and the left-
hand-side tails of the p.d.f.s in figure 13(b) drop off abruptly. This is caused by an
increased Trms at these Ro (figure 4), which is used to scale the horizontal axis, in
combination with the simultaneous requirement that the temperature should always
remain in the range 0 � T � 1. The probability for the temperature to attain values
approaching either 0 or 1 diminishes rapidly, hence the drop-off.

The same plots for height z = 0.8H in figure 13(b) reveal a remarkable uniformity.
The p.d.f.s are skewed negatively. As the measurement is taken closer to the top plate,
plumes with lower-than-average temperatures are more probable, hence the stronger
negative tail. The shapes at all Ro considered here are very similar. For the lowest
Ro again the confinement of 0 � T � 1 is observed, reducing the skewness magnitude.
Quantitatively, S ≈ −2 for Rossby numbers equal to 0.72 and higher, while for the
lower Rossby numbers S decreases in magnitude with decreasing Ro to S ≈ −1 at
Ro = 0.045.

Since the parameter range for these numerical simulations is comparable to that
used by Liu & Ecke (1997), it is not surprising that the exponential p.d.f.s are found
here as well. The intense temperature fluctuations in rotating convection are thus
predominantly associated with the presence of confined coherent structures, namely
the vortical plumes. The transition from the plumes of non-rotating convection to the



Turbulent convection in a rotating cylinder 467

10–2 10–1 100 101

10–1

10–2

Ro

δ
T

δ
v

δE

δS,1/3

δS,1/4

Figure 14. Boundary layers in cylindrical rotating convection. The following are included:
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dimensionless viscous-boundary-layer thickness δν near horizontal plates (circles) and near the
sidewall (squares). Dimensionless boundary-layer scales δE = Ek 1/2 (Ekman layer at bottom
and top plates), δS,1/3 =Ek 1/3 and δS,1/4 =Ek 1/4 (inner and outer Stewartson layer at sidewall,
respectively) are also included.

vortical tube-like structures of rotating convection apparently has no effect on the
shape of the temperature p.d.f.

6. Boundary layers and mean temperature gradient
In this section we treat two results that are only available from the simulations: the

boundary layers near the plates and the sidewall and the mean temperature gradient
found in the fluid bulk. The experimental arrangement in its current configuration
did not allow for an investigation of the boundary-layer regions.

6.1. Boundary-layer thicknesses

Viscous boundary layers are formed near both horizontal plates and near the sidewall.
Thermal boundary layers are only found near the horizontal plates, as the sidewall
is adiabatic. Under rotation the boundary layers are active: fluid exchange between
boundary layer and bulk takes place because of Ekman pumping and/or suction. The
thickness of the boundary layer is important for the magnitude of these fluxes. The
active nature of the boundary layers makes them an integral part of the description of
turbulent rotating convection. Here we present simulation results on the thicknesses
of the various boundary layers.

A commonly applied definition of the boundary-layer size is the distance to the
wall of the maximum in the r.m.s. velocity or temperature. This definition has been
used to find boundary-layer scales near the horizontal plates (from the azimuthal-
velocity r.m.s. profile and r.m.s. temperature profile close to the cylinder axis) and
near the sidewall (from the azimuthally averaged vertical-velocity r.m.s. profile in
radial direction at mid-height). These are presented for the various Ro in figure 14.

The thermal-boundary-layer thickness δT is nearly independent of Ro. It is buried
within the thicker viscous layer of thickness δν since σ > 1. Rotation exclusively affects
the viscous boundary layer directly; any changes to the thermal boundary layer
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are caused indirectly. Only at the lowest Ro considered here the viscous boundary
layer is thinner than the thermal layer. Then the bulk flow field can directly affect
the thermal layer; at even lower Ro a change of its thickness is expected. The
viscous-boundary-layer thickness near the horizontal plates rises with increasing Ro
up to Ro ≈ 2. Its slope matches well with the dimensionless Ekman-layer thickness
δE = Ek 1/2 ∼ Ta−1/4 ∼ Ro1/2 (the Ekman number is Ek ≡ ν/(ΩH 2) =

√
4/Ta; Ekman

1905), but quantitatively it is roughly larger by the factor two.
The viscous layer on the sidewall shows more changes under rotation. At the

lowest Ro � 0.2 considered, the thickness follows the (dimensionless) thickness of the
inner Stewartson layer δS,1/3 = Ek 1/3 ∼ Ro1/3 (Stewartson 1957). The outer Stewartson

layer δS,1/4 = Ek 1/4 ∼ Ro1/4 is also included for reference. Around Ro ≈ 2 there is a
considerable widening, as the LSC is rather unstable at this Ro. The layer thickness
for Ro � 3 is unaffected by rotation.

6.2. Mean temperature gradient

In non-rotating convection the vertical mean temperature profile can be divided
into three regions: a well-mixed isothermal (convective) bulk, with two (conductive)
boundary-layer regions of dimensionless thickness δT = 1/(2Nu) (Busse 1978;
Grossmann & Lohse 2000). When rotation is added a mean temperature gradient
persists over the fluid bulk (Julien et al. 1996b; Hart & Ohlsen 1999). Measurements
in air-cooled rotating convection without a solid top plate also indicated the presence
of a mean gradient (Boubnov & Golitsyn 1990; Fernando et al. 1991). According
to Julien et al. (1996b) the presence of the gradient can be seen as an indication that
the vertical mixing is less efficient than in the non-rotating case.

In the current simulations the mean temperature is averaged in time at the cylinder
axis. Next, the mean gradient is calculated at the mid-height z = 0.5 by fitting a linear
function for 0.3 <z < 0.7. The strength of the mean gradient and its dependence on
Ro is depicted in figure 15. At high Ro, i.e. Ro � 2.5, a small positive gradient is found.
This is explained by the overturning motion of the LSC. Warm plumes rise on one
side of the cylinder and then cross horizontally in the upper half of the cylinder. Cold
plumes cross the cell in the opposite fashion. On the axis a small positive gradient may
be found. This gradient has been measured before by Tilgner, Belmonte & Libchaber
(1993) and Brown & Ahlers (2007), both for non-rotating convection in water.
Tilgner et al. (1993) measured a dimensionless gradient ∂ 〈T 〉 /∂z = 0.020 ± 0.007 at
Ra = 1.1 × 109 and σ = 6.6. Brown & Ahlers (2007) measured the gradient in a range
of Rayleigh numbers at two Prandtl numbers σ = 4.4 and 5.5. At Ra =1.0 × 109 and
σ = 5.5 the corresponding gradient is ∂ 〈T 〉 /∂z = 0.015. These values are quantitatively
in good agreement with the gradient found in our simulations at Ro =5.76, but the
value at Ro = 11.52 is found to be lower. A reconsideration of our simulation run at
Ro = ∞ (Kunnen et al. 2008a) provided the gradient value ∂ 〈T 〉 /∂z = 0.0145±0.0004,
consistent with the aforementioned experimental results.

At smaller Rossby numbers Ro � 2.5 a mean negative gradient persists. A qualitative
description of the observation of a mean temperature gradient in rotating convection
is given by Julien et al. (1996b, 1999), Legg et al. (2001) and Sprague et al. (2006). They
postulated that the merger of vortical plumes, reported in many studies (Boubnov
& Golitsyn 1986; Zhong et al. 1993; Julien et al. 1996b; Ecke & Liu 1998; Sprague
et al. 2006), enhances horizontal mixing of the temperature anomaly of the plumes,
which results in a mean temperature gradient.

Several regimes can be discerned in the mean temperature gradient plot as a
function of Ro, below Ro = 2.5. In the range 1 � Ro � 2.5 the dependence on Ro is
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0.18, 0.09 and 0.045.

stronger than for 0.1 � Ro � 1. At the lowest Ro � 0.1 there is again a steeper slope.
When the Rossby number is decreased even further, eventually the gradient must
approach the conductive value ∂ 〈T 〉 /∂z = −1 throughout the fluid. All fluid motions
are then inhibited by rotation, and the only heat transfer is due to conduction, for
which Nu = 1 by definition.

7. Anisotropy
Just as in our previous experimental work (Kunnen et al. 2008b), we can consider

the anisotropy of the simulated flow with the invariants of the anisotropy tensor and
the Lumley map (Lumley & Newman 1977; Lumley 1978; Choi & Lumley 2001;
Simonsen & Krogstad 2005).

The Reynolds stress tensor is defined as Rij ≡ uiuj . Here ui is the ith Cartesian
velocity component (i and j take integer values 1–3; here 3 is taken as the vertical
direction), and the overbar indicates spatial averaging, which in this case is applied
over the line segment with the numerical probes (see § 3.1). It has been validated that
in this spatial extent the flow is homogeneous, such that spatial averaging is equivalent
to averaging in time. Closer to the sidewall stronger inhomogeneities occur.

The anisotropy of the flow can be characterized with bij ≡ Rij/Rkk − (1/3)δij , the
deviatoric part of Rij ; δij is the second-order Kronecker tensor, and summation over
repeated indices is implied; bij is a symmetric, traceless tensor. The first invariant of
bij (the trace) is thus zero. The second and third invariants of bij , denoted here as II
and III , are

II ≡ −bijbji/2 , III ≡ bijbjkbki/3 = det(bij ) . (7.1)
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The invariants provide a means of graphical evaluation of the anisotropy (Lumley
& Newman 1977; Lumley 1978; Choi & Lumley 2001; Simonsen & Krogstad 2005).
All turbulent states that can be realized are found within a triangular region in the
(III , −II ) plane or the so-called Lumley triangle (see e.g. figure 1 of Simonsen &
Krogstad 2005 and figure 16 of this work). Three limiting cases are found in
the corners: three-component isotropic turbulence is found for II = III = 0; two-
component axisymmetric turbulence is found in the left corner of the triangle; the
right corner is the limiting case of one-component turbulence. The line between the left
and right extreme points represents non-axisymmetric two-component turbulence. The
limiting curve that connects the origin to the leftmost point was designated pancake-
shaped turbulence by Choi & Lumley (2001) and disk-like turbulence by Simonsen &
Krogstad (2005): bij possesses one small and two large eigenvalues, so that one
component of the turbulent kinetic energy is smaller than the other two. The curve
from the origin to the rightmost point represents the state in which bij has one
eigenvalue that is larger than the other two, designated cigar-shaped turbulence
by Choi & Lumley (2001) and rod-like turbulence by Simonsen & Krogstad (2005).

In our previous work (Kunnen et al. 2008b) it was found that rotation affects
the turbulence anisotropy tensor differently in various positions inside the cylinder.
In the central region the tensor has one dominant eigenvalue, pointing out that
velocity fluctuations in one direction (vertical) are dominant. Closer to the top plate a
remarkably isotropic state is found, where the velocity fluctuations in the three spatial
directions are of roughly equal strength. This behaviour is remarkably different from
rotating turbulence (van Bokhoven 2007), where rotation causes the anisotropy tensor
to develop two large eigenvalues and horizontal velocity is strongest.

The invariants of the anisotropy tensor can also be calculated from the time series
of velocity components, obtained from the numerical probes at positions z = 0.5H

and z = 0.8H . In figure 16 Lumley maps at representative Ro values are shown, with
the temporal evolution of the invariants II and III . At Ro = 11.52 there is a lot
of spread in time for the invariants, at both heights. When the Rossby number is
decreased distinct trends are observed at the two heights. At mid-height the trajectory
is increasingly pressed against the limiting curve for axisymmetric turbulence with
one large eigenvalue. This again points at the development of the columnar vortical
plumes under rotation. At z = 0.8H a reduction in the spread of the trajectory is
observed: it is confined to a smaller area near the origin of the graph (the point that
designates three-component isotropic turbulence). Thus at this height the turbulence
becomes increasingly isotropic as Ro is reduced.

A concise view of the dependence on rotation of the invariants is obtained by taking
the time-averaged values and plotting the time averages in a Lumley triangle. This
plot is shown in figure 17. Included are the following Rossby numbers: Ro =11.52,
2.88, 1.44, 0.72, 0.36, 0.18, 0.09, 0.068 and 0.045. The path that belongs to z = 0.5H

(filled triangles) shows no clear uniform direction for the higher Rossby numbers,
Ro > 1. At lower Ro the path goes downward up to the point for Ro =0.18, the point
closest to the isotropic state in this path. For the lowest Ro < 0.18 the path follows the
bounding curve upward, which indicates the growing anisotropy as one eigenvalue of
the anisotropy tensor (the one corresponding to vertical velocity fluctuations) becomes
larger relative to the other two. The path at z = 0.8H nearly uniformly approaches
the point of isotropy at the origin.

Qualitatively the paths in the Lumley triangle from experiment and simulation are
very similar. Only quantitatively there is some discrepancy. The measured velocity
fluctuations in the experiments are lower than found in the simulations. The stronger
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fluctuations from the simulations (and corresponding stronger excursions of the
trajectories in the maps of figure 16) translate to larger numerical mean values for
the invariants in the simulation results. Another difference is that the excursion
towards the negative side of 〈III 〉, towards pancake-shaped or disk-like turbulence,
found in the experiment at z = 0.8H for the lowest Ro =0.09, is not reproduced in
the simulations. It may well be that at even lower Ro such a development is also
observed in the simulations.

8. Conclusions
The effects of rotation on many aspects of turbulent rotating convection have been

discussed based on results from measurements of flow velocity and DNSs. A tentative
separation into three regimes based on the Rossby number is suggested below.

(i) Ro � 2. In this range of Rossby numbers the flow behaviour is dominated by the
presence of the LSC. Variation of Ro has only minor effect. There is an increase found
in the r.m.s. velocity and vorticity fluctuations for Ro � 3 compared with Ro � 3, which
we suspect is a sign of the Ekman pumping mechanism becoming active. Additionally,
this Rossby number marks the point at which rotation influences the strength and
stability of the LSC as shown in Kunnen et al. (2008a). In distribution functions of
the vertical vorticity some slight asymmetry is found, pointing at a preference for
cyclonic vorticity induced by the Ekman pumping even for modest rotation rates.

(ii) 0.1 � Ro � 2. The LSC is replaced by vortical columns as the dominant flow
structure. The viscous boundary layers at the bottom and top plates and the sidewall
follow the scalings of the boundary-layer thicknesses of laminar rotating flow, viz. the
Ekman and inner Stewartson layers. In this range the turbulence intensity drops as
rotation is increased approximately as a power law, Ro0.2. Conversely, the vorticity
fluctuations in the centre are hardly affected by rotation, while closer to the plates
they grow in magnitude as rotation is increased. The temperature r.m.s. values show
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an opposite and stronger relation with Ro than the r.m.s. velocities: they scale
approximately as Ro−0.32. A mean vertical temperature gradient is found in the bulk
fluid, in contrast with the well-mixed interior found in non-rotating convection. In
spite of these signs of stabilization the convective heat flux, the Nusselt number, is
larger than without rotation (Rossby 1969; Liu & Ecke 1997; Kunnen et al. 2008a;
Zhong et al. 2009).

(iii) Ro � 0.1. In this range of Rossby numbers rotation has a more pronounced
influence on the turbulence intensities, including vorticity: a considerably steeper
dependence on Ro is reported in this range. The stabilizing effect of rotation is clearly
demonstrated in these statistics. The anisotropy in the flow reaches opposite extremes:
in the centre a clear anisotropy is found, where one velocity component is dominant,
while closer to the plates a transition towards the isotropic state is observed.
The division into three regimes matches with the classification by Boubnov & Golitsyn
(1990, 1995): these authors label the first regime ‘thermal turbulence’, the second
regime ‘irregular geostrophic turbulence’ and the last regime ‘(quasi-)regular vortex
grid.’

This combined numerical and experimental investigation of the intricate and highly
relevant problem that is turbulent rotating convection has provided us with a clear
overview of the turbulence statistics. It has also become clear that the coherent
vortical plumes that are found in this flow play an important role. Therefore we are
now investigating these structures in more detail.

The authors wish to thank Laurens van Bokhoven (SPIV algorithm and design
of the rotating table) and Rinie Akkermans (SPIV algorithm) as well as Ad
Holten, Gerald Oerlemans and Freek van Uittert (design and manufacturing of
the experimental set-up) for their contributions to this work. R.P.J.K. wishes to thank
the Foundation for Fundamental Research on Matter (Stichting voor Fundamenteel
Onderzoek der Materie, FOM) for financial support. This work was sponsored by
the National Computing Facilities Foundation (NCF) for the use of supercomputer
facilities, with financial support from the Netherlands Organisation for Scientific
Research (NWO).

REFERENCES

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent
Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503–537.

Ashkenazi, S. & Steinberg, V. 1999 Spectra and statistics of velocity and temperature fluctuations
in turbulent convection. Phys. Rev. Lett. 83, 4760–4763.

Balachandar, S. & Sirovich, L. 1991 Probability distribution functions in turbulent convection.
Phys. Fluids A 3, 919–927.

van Bokhoven, L. J. A. 2007 Experiments on rapidly rotating turbulent flows. PhD thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands.

van Bokhoven, L. J. A., Clercx, H. J. H., van Heijst, G. J. F. & Trieling, R. R. 2009 Experiments
on rapidly rotating turbulent flows. Phys. Fluids 21, 096601.

Boubnov, B. M. & Golitsyn, G. S. 1986 Experimental study of convective structures in rotating
fluids. J. Fluid Mech. 167, 503–531.

Boubnov, B. M. & Golitsyn, G. S. 1990 Temperature and velocity field regimes of convective
motions in a rotating plane fluid layer. J. Fluid Mech. 219, 215–239.

Boubnov, B. M. & Golitsyn, G. S. 1995 Convection in Rotating Fluids . Kluwer Academic.

Brown, E. & Ahlers, G. 2006 Effect of the Earth’s Coriolis force on the large-scale circulation of
turbulent Rayleigh–Bénard convection. Phys. Fluids 18, 125108.



474 R. P. J. Kunnen, B. J. Geurts and H. J. H. Clercx

Brown, E. & Ahlers, G. 2007 Temperature gradients, and search for non-Boussinesq effects, in the
interior of turbulent Rayleigh–Bénard convection. Europhys. Lett. 80, 14001.

Busse, F. H. 1978 Non-linear properties of thermal convection. Rep. Progr. Phys. 41, 1929–1967.

Busse, F. H. 1994 Convection driven zonal flows and vortices in the major planets. Chaos 4, 123–134.

Busse, F. H. & Carrigan, C. R. 1976 Laboratory simulation of thermal convection in rotating
planets and stars. Science 191, 81–83.

Camussi, R. & Verzicco, R. 2004 Temporal statistics in high Rayleigh number convective
turbulence. Eur. J. Mech. B 23, 427–442.

Castaing, B., Gagne, Y. & Hopfinger, E. J. 1990 Velocity probability density functions of high
Reynolds number turbulence. Physica D 46, 177–200.

Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z.,

Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard
convection. J. Fluid Mech. 204, 1–30.

Chandrasekhar, S. 1953 The instability of a layer of fluid heated from below and subject to
Coriolis forces. Proc. R. Soc. Lond. A 217, 306–327.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability . Oxford University Press.

Choi, K.-S. & Lumley, J. L. 2001 The return to isotropy of homogeneous turbulence. J. Fluid Mech.
436, 59–84.

Ecke, R. E. & Liu, Y. 1998 Traveling-wave and vortex states in rotating Rayleigh–Bénard convection.
Intl J. Engng Sci. 36, 1471–1480.

Ekman, V. W. 1905 On the influence of the Earth’s rotation on ocean-currents. Arch. Math. Astron.
Phys. 2, 1–52.

Fernando, H. J. S., Chen, R.-R. & Boyer, D. L. 1991 Effects of rotation on convective turbulence.
J. Fluid Mech. 228, 513–547.

Gascard, J.-C., Watson, A. J., Messias, M.-J., Olsson, K. A., Johannessen, T. & Simonsen, K.

2002 Long-lived vortices as a mode of deep ventilation in the Greenland Sea. Nature (Lond.)
416, 525–527.

Gill, A. E. 1982 Atmosphere–Ocean Dynamics . Academic.

Glazier, J. A., Segawa, T., Naert, A. & Sano, M. 1999 Evidence against ‘ultrahard’ thermal
turbulence at very high Rayleigh numbers. Nature (Lond.) 398, 307–310.

Goldstein, H. F., Knobloch, E., Mercader, I. & Net, M. 1993 Convection in a rotating cylinder.
Part 1. Linear theory for moderate Prandtl numbers. J. Fluid Mech. 248, 583–604.

Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech.
407, 27–56.

Hart, J. E. 2000 On the influence of centrifugal buoyancy on rotating convection. J. Fluid Mech.
403, 133–151.

Hart, J. E., Kittelman, S. & Ohlsen, D. R. 2002 Mean flow precession and temperature probability
density functions in turbulent rotating convection. Phys. Fluids 14, 955–962.

Hart, J. E. & Ohlsen, D. R. 1999 On the thermal offset in turbulent rotating convection. Phys.
Fluids 11, 2101–2107.

Heslot, F., Castaing, B. & Libchaber, A. 1987 Transition to turbulence in helium gas. Phys. Rev.
A 36, 5870–5873.

Jones, C. A. 2000 Convection-driven geodynamo models. Phil. Trans. R. Soc. Lond. A 358, 873–897.

Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996a Hard turbulence in rotating Rayleigh–
Bénard convection. Phys. Rev. E 53, R5557–R5560.

Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996b Rapidly rotating turbulent Rayleigh–
Bénard convection. J. Fluid Mech. 322, 243–273.

Julien, K., Legg, S., McWilliams, J. & Werne, J. 1999 Plumes in rotating convection. Part 1.
Ensemble statistics and dynamical balances. J. Fluid Mech. 391, 151–187.

Kerr, R. M. 1996 Rayleigh number scaling in numerical convection. J. Fluid Mech. 310, 139–179.

Kerr, R. M. & Herring, J. R. 2000 Prandtl number dependence of Nusselt number in direct
numerical simulations. J. Fluid Mech. 419, 325–344.

van de Konijnenberg, J. A., Andersson, H. I., Billdal, J. T. & van Heijst, G. J. F. 1994 Spin-up
in a rectangular tank with low angular velocity. Phys. Fluids 6, 1168–1176.

Krishnamurti, R. & Howard, L. N. 1981 Large-scale flow generation in turbulent convection.
Proc. Natl. Acad. Sci. USA 78, 1981–1985.



Turbulent convection in a rotating cylinder 475

Kunnen, R. P. J. 2008 Turbulent rotating convection. PhD thesis, Eindhoven University of
Technology, Eindhoven, The Netherlands.

Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2006 Heat flux intensification by vortical flow
localization in rotating convection. Phys. Rev. E 74, 056306.

Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2008a Breakdown of large-scale circulation in
turbulent rotating convection. Europhys. Lett. 84, 24001.

Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2008b Enhanced vertical inhomogeneity in
turbulent rotating convection. Phys. Rev. Lett. 101, 174501.

Kunnen, R. P. J., Clercx, H. J. H., Geurts, B. J., van Bokhoven, L. J. A., Akkermans, R. A. D. &

Verzicco, R. 2008c Numerical and experimental investigation of structure function scaling
in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.

Kunnen, R. P. J., Geurts, B. J. & Clercx, H. J. H. 2009 Turbulence statistics and energy budget
in rotating Rayleigh–Bénard convection. Eur. J. Mech. B 28, 578–589.
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